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2. Literature Review 

2.1. Network Analysis 

Network analysis is a branch of graph theory which aims at describing quantitative properties of networks of 
interconnected entities by means of mathematical tools. Any domain which can be described as a set of 
interconnected objects is a domain application for network analysis. Its methods and tools work on top of this 
abstraction, and as such, they are totally indifferent to the nature and properties of the entities involved, be they 
train stops in a railway network, individuals of a given social group bound by kinship relationship, or hosts in a 
computer network (Bellomi, 2009). 

In this research, we use network analysis as an approach to calculate the ICT startup investment network 
properties. The network properties used in this research are the properties that can explain the characteristic of 
small world network. The definition of each network properties is shown in this table. 

Table 1. The Small Network Properties Description 

Network Properties Description 

Degree Distribution the probability distribution of the degree of a 
node over the whole network (Barabasi & 
Chandler, 2009). 

Density The fraction of number edges in network to 
the maximum edges possible (Newman, 
2012) 

Diameter The largest distance recorded between any 
pair of nodes. (Barabasi & Chandler, 2009) 

Average Path Length The average distance between all pairs of 
nodes in the network. (Barabasi & Chandler, 
2009) 

Average Clustering 
Coefficient 

the global value of tendency of the actors in 
network to form a cluster  (Pandapotan, 
Alamsyah & Paryasto, 2015) 

 

2.2. Bipartite Network 

Based on principle in graph theory, a bipartite network is a network whose nodes can be divided into two 
disjoint sets U and V, where U and V are each independent set, such that every edge connects a node in U to one in 
V (Alamsyah & Peranginangin, 2015) . We use this kind of network to our topic, where the two set of nodes are 
sets of ICT startups and sets of investors that invested in that startups.   

2.3. Preferential Attachment 

A central ingredient of all models aiming to generate scale-free networks is preferential attachment, i.e., the 
assumption that the likelihood of receiving new edges increases with the node’s degree (Barabasi & Chandler, 
2009). Preferential attachment is a stochastic process that has been proposed to explain certain topological features 
characteristic of complex networks from diverse domains. The systematic investigation of preferential attachment 
is an important area of research in network science, not only for the theoretical matter of verifying whether this 
hypothesized process is operative in real-world networks, but also for the practical insights that follow from 
knowledge of its functional form (Pham, Sheridan & Shimodaira, 2015). Preferential attachment is one of the 
properties of the social network. Because of this preferential attachment, it will form the hub nodes in the network. 
The hubs will enable the formation of the small world network, because shortest path between nodes flows through 
this hubs. 
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