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Abstract  Spatio-temporal data are susceptible to covariates measured with errors. However, little is known about the 

empirical effects of measurement error on the asymptotic biases in regression coefficients and variance components when 

measurement error is ignored. The purpose of this paper is to analyze Bayesian inference of spatio-temporal models in the 

case of a spatio-temporally correlated covariate measured with error by way of Monte Carlo simulation. We consider spa-

tio-temporal model with spatio-temporal correlation structure corresponds to the Leroux conditional autoregressive (CAR) 

and the first order autoregressive priors. We apply different spatio-temporal dependence parameter of response and covari-

ate. We use the relative bias (RelBias) and Root Mean Squared Error (RMSE) as valuation criteria. The simulation results 

show the Bayesian analysis considering measurement error show more accurate and efficient estimated regression coeffi-

cient and variance components compared with naïve analysis. 
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1. Introduction 

Space-time data are common in social sciences, epidemi-

ology, environmental and agricultural sciences. The data are 

typically collected from points or regions located in space 

and over time.  That sample data commonly observed are 

not independent, but rather spatially and temporally de-

pendent, which means that observation from one loca-

tion-time tend to exhibit values similar to those from nearby 

locations-time.  Ignoring the violation of spatial and tem-

poral independence between observations will produce es-

timates that are biased and inconsistent. 

A large variety of spatio-temporal models to take spa-

tio-temporal dependence among observations into account 

have been developed (Rushworth et al., 2014; Ugarte et al., 

2014; Truong et al., 2016). An approach is the mixed effects 

model which modeling the random effects of the spatial and 

temporal correlations structure. 

Spatio-temporal data are susceptible to covariates 

measured with errors.  Li et al. (2009) showed that the es-

timator of the regression coefficients are attenuated, while 

the estimator of the variance components are inflated, if 

covariate measurement error is ignored.  Furthermore, 

Huque et al. (2014) showed that the amount of attenuation 

depends on the degree of spatial correlation in both the true 

covariate of interest and the assumed random error from the 

regression model. 

Several approaches to correct for measurement error have 

been proposed in literature for independent data (Muff et al., 

2015; Stoklosa et al., 2016).  However, limited work has 

been done in modeling measurement error in covariates for 

spatio-temporal data.  For spatial data, Li et al. (2009) 

proposed the use of maximum likelihood based on EM al-

gorithm to adjust for measurement error under the assumed 

correlation structure. The estimators of the regression coef-

ficients and the variance components correct the biases in 

naive estimator and have smaller MSE than the naïve esti-

mators.  However, their simulation assumes that the meas-

urement error variance is known.  Huque et al. (2014) pro-

posed two different strategies to produce consistent estimates: 

(i) adjusting the estimates using an estimated attenuation 

factor, and (ii) using an appropriate transformation of the 

error prone covariate.  Additionally, Huque et al. (2016) 

proposed a semiparametric approach to obtain bias-corrected 

estimates of parameters. They used penalized least squares 

which makes the estimation of parameters and inference 

straightforward. 

For spatio-temporal data, Xia and Carlin (1998) presented 

a spatio-temporal analysis of spatially correlated data ac-

counted for measurement error in covariates using Gibbs 

sampling. However, little is known about the empirical ef-

fects of measurement error on the asymptotic biases in re-
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gression coefficients and variance components when meas-

urement error is ignored. 

Muff et al. (2015) stated that among several approaches to 

correct for measurement error, Bayesian methods probably 

provide the most flexible framework. The advantage of 

Bayesian approaches is that prior knowledge, and in partic-

ular prior uncertainty of error variance estimates can be 

incorporated in the model.  While frequentist approaches 

require to fix the regression coefficients and the variance 

components parameters to guarantee identifiability, the 

Bayesian setting allows to represent uncertainty with suitable 

prior distributions. 

The purpose of this paper is to analyze Bayesian inference 

of spatio-temporal models in the case of a spatio-temporally 

correlated covariate measured with error by way of Monte 

Carlo simulation. 

2. Regression Model with Measurement  
Error 

Muff et al. (2015) presented the framework of general-

ized linear (mixed) model with measurement error (ME) as 

follows, 

2.1. The Generalized Linear (Mixed) Model 

Let be the observable response vari-

able collected from site i=1,…..,n which is related to some 

set of k error free covaraites   and a 

single error prone true and unobservable covariate 

. Suppose that y is of exponential family  

form with mean  linked to the linear predictor 

 with 

    

          (1) 

Here, h(.) is a known monotonic inverse link (or response) 

function,  the intercept,  the fixed effect for the error 

prone covariate x and  is 1 x k with a corresponding 

vector  of fixed effects. This generalized linear model is 

extended to a generalized linear mixed model by adding 

normally distributed random effects on the linear predictor 

scale (1).  

2.2. Classical Measurement Error Model 

Let denote the observed version of 

the true, but unobserved covariate x. In the classical meas-

urement error model it is assumed that the covariate x can be 

observed only via a proxy p, such that in vector notation,  

 p = x + u,  

with . The components of  the error 

vector u are assumed to be independent and normally dis-

tributed with mean 0 and variance , i.e. cov (ui , uj)=0 for  

i≠j. The error structure can be heteroscedastic with 

, where the elements in the diagonal matrix 

D represent known weight di > 0.   

In the most general case, the covariance x is Gaussian with 

mean depending on z, i.e. 

 )         (2) 

where  is the intercept,  the k x 1 vector of fixed ef-

fects and  the residual variance in the linear regression 

of x on z. If =0, then x is independent of z. 

The latent Gaussian hierarchical model for classical 

measurement error (ME) model defined as follows, 

(i)  The observational model encompasses two components, 

namely the regression model and the error model: 

 ,        (3) 

 p = x + u,              (4) 

p is now part of the observational model, which is thus y, p|v, 

θ1 instead of y|v, θ1. 

(ii)  The latent part contains the exposure model for x 

 , ,       (5) 

as well as the specification of independent Gaussian priors 

for the regression coefficients.  Thus the latent field is  

 v = (xT, β0, βz
T, α0, αz

T)T. 

The exposure model (2) can be extended to include struc-

tured or unstructured random effects. 

(iii)  The third level describes the prior distributions for all 

hyperparameters 

θ = (βx, τu, τx, θ1
T)T, 

with θ1 representing (possible) hyperparameters of the like-

lihood. The  regression coefficient βx is also considered as 

an unknown hyperparameter, and not as part of the latent 

field.  The following priors were considered, i.e., the normal 

prior with mean 0 and low precision for βx and  gamma 

priors for τx and τu. 

3. Simulation 

We consider the spatio-temporal model (location i and 

time t) with a single true covariate   as follows: 

         (6) 

with  the response in location  during 

time period ;  is an unobserved true co-

variates relating to location  during time period ,  is 

the associated regression parameter of ,  are the ran-

dom effects after the effects of covariate has been removed 

that are spatio-temporally correlated and  is the residual 

 (Rushworth et al., 2014; Truong et al., 2016). 

The random effects  defined as follows 

 

 

(7) 

 

   (8) 

where  is the random effects for time period 1 except 

for ,   is the vector of random effects for time period 

,   is the  adjacent matrix (  if 

areas  and  are adjacent or 0 otherwise),  is the spatial 

parameter,  is the temporal parameter, and  is the 

parameter controlling the variance of random effects.  The 

precision matrix  corresponds to the Leroux con-

ditional autoregressive (CAR) prior and is given by 

,  where 

 is the  vector of ones,   is the n x n identity ma-

trix. 

We assume a spatio-temporal random effects model for 

the unobserved covariate X: 
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          (9) 

where   are random effects for spatio-temporal auto-

correlation in the covariate X and  is the residual 

 similar to (1) with different parameter. 

We assume that  , where  is the 

observed covariates related to the true covariates  

according to a classical measurement error model with 

 

We take the data to be on a regular grid. The weight wij is 

set to be 1 if areas i and j are neighbors and 0 otherwise.  

The spatial dependence parameter for X is considered to be 

=0.1, 0.5, 0.9 resulting in minimal, moderate and high 

correlation.  The variance parameter for space-time inter-

action and residual error term are taken as 0.3 and 0.1, re-

spectively. We consider the temporal dependences parame-

ter  = 0.5 and 0.9 respectively.  The observed 

error-prone covariate  P is generated by adding Gaussian 

noise with variance σ2
U =0.3 to X.  Outcome data, Y, are 

then generated according to equation (6), with slope and 

intercept parameters set at (β0, βx)
T = (1, 2)T. The variance 

parameter for space-time interaction and residual error term 

are taken as 0.2 and 0.1, respectively. The spatial depend-

ence taken to be 0.5 and the temporal dependences parame-

ter similar to X. We consider the grid size to be 7 (n= 7 x 7) 

and 10 (n = 10 x 10), and T=10 consecutive time period. 

We generate 100 Monte Carlo simulation datasets.  For 

each generated dataset, we compute the Bayesian estimates 

that ignored (naïve estimates) and accounted for the meas-

urement error, respectively. 

We compute the relative bias (RelBias) and the Root 

Mean Square Error (RMSE) for each parameter estimate 

over 100 samples for each simulation. These statistics are 

defined as 

 

 

where  is the estimate of  for the  sample and 

k=100. 

We also compare the models based on Marginal 

Log-Likelihood, Deviance Information Criterion (DIC), and 

Watanabe-Akaike Information Criterion (WAIC). These 

statistics are defined as 

 and  

where  the posterior mean of the de-

viance, , which  

the likelihood function, and Q is the number of iterations, 

lppd the log pointwise predictive density, and  the effec-

tive number of parameters (Gelman et al., 2014). 

We fitted the models using the INLA R-package availa-

ble at http://www.r-inla.org. We consider independent 

Gaussian N (0, 10-4) prior to regression coefficient βx, and  

gamma G (0.01, 0.01) priors to the precision parameter 

τu,τx,and τε. 

3. Main Results 

Table 1 and 2 show that the degree of RelBias and RMSE  

for regression coefficients for measurement error and naïve 

models vary with the strength of the spatial and temporal 

correlation structure of covariate as well as the residuals.  

However, the average RelBias (in absolute value) and the 

average RMSE for regression coefficients of the measure-

ment error model smaller than the naïve model.  

Note that both methods underestimate the true regression 

coefficient  and increase with the spatial dependence 

parameter of covariate.  For naïve model, the average 

RelBias  (in absolute value) for regression coefficients  

decrease with the temporal dependence parameter, but in-

crease for measurement error model. Note that the temporal 

dependence parameter of response and covariate are the 

same. However, the measurement error model estimator’s 

consistently provides less bias compared with the naïve 

model.  

The average RelBias (in absolute value) and the average 

RMSE for variance components of the measurement error 

model also smaller than the naïve model. Note that the av-

erage RelBias for spatial variance components σ2
sy of both 

methods increase with the spatial and temporal dependence 

parameter.  According to Li et al. (2009) and Huque et al. 

(2014; 2016) that naïve estimator of regression coefficient 

attenuated and the variance components inflated if covarate 

measurement error ignored. Furthermore, Li et al. (2009) 

stated that the stronger dependence implies that neighbor 

areas can provide more information, and hence the estimates 

are more resistant to the effect of measurement error. 

Table 1.  RelBias and RMSE of Regression Coefficients and Variance 
Components for Bayesian Spatio-Temporal Measurement Error and Naïve 
Models with N=49, T=10 and σU

2=0.3 

Model 

ρT 

 

 (ρsy, ρsx) Param-

eter 

ME NAIVE 

RelBias RMSE RelBias RMSE 

0.5 (0.5, 0.1) 

 

 

 

(0.5, 0.5) 

 

 

 

(0.5, 0.9) 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

0.0103 

-0.0412 

0.8724 

-0.2935 

-0.0158 

-0.1064 

1.5012 

-0.3875 

0.0087 

-0.2904 

3.3781 

-0.2451 

0.0757 

0.2555 

0.2931 

0.0572 

0.0858 

0.3423 

0.3894 

0.0563 

0.1678 

0.6418 

0.7326 

0.0449 

0.0102 

-0.4529 

1.2371 

5.6874 

-0.0162 

-0.5261 

1.9092 

4.1544 

0.0078 

-0.5184 

2.7439 

3.6150 

0.0755 

0.9079 

0.3453 

0.5851 

0.0861 

1.0544 

0.4738 

0.4430 

0.1623 

1.0422 

0.7406 

0.4645 

0.9 (0.5, 0.1) 

 

 

 

(0.5, 0.5) 

 

 

 

(0.5, 0.9) 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

0.0087 

-0.2315 

7.4841 

-0.5994 

0.0150 

-0.2998 

6.9942 

-0.4383 

-0.0054 

-0.3632 

7.4981 

-0.4060 

0.1465 

0.4712 

1.5411 

0.0661 

0.1852 

0.6096 

1.4232 

0.0642 

0.3590 

0.7339 

1.5280 

0.0548 

0.0087 

-0.4333 

7.6420 

4.6885 

0.0150 

-0.5216 

7.1501 

3.6338 

-0.0055 

-0.5339 

7.6598 

2.8920 

0.1465 

0.8689 

1.5740 

0.4744 

0.1851 

1.0452 

1.4540 

0.3696 

0.3590 

1.0695 

1.5601 

0.2991 

Table 2.  RelBias and RMSE of Regression Coefficients and Variance 
Components for Bayesian Spatio-Temporal Measurement Error and Naïve 
Models with N=100, T=10 and σU

2=0.3 

Model 

 

ρT 

 

 (ρsy, ρsx) Parameter ME NAIVE 

RelBias RMSE RelBias RMSE 

0.5 (0.5, 0.1) 

 

 

 

(0.5, 0.5) 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

-0.0033 

-0.0754 

1.3159 

-0.0232 

-0.0080 

0.0530 

0.2346 

0.3016 

0.0518 

0.0608 

-0.0031 

-0.4530 

1.5657 

5.4041 

-0.0078 

0.0530 

0.9068 

0.3424 

0.5437 

0.0608 
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(0.5, 0.9) 

 

 

 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

 

 

 

-0.1961 

2.2850 

-0.1404 

0.0072 

-0.3154 

3.5928 

-0.1975 

 

 

 

0.4290 

0.4790 

0.0342 

0.1157 

0.6840 

0.7382 

0.0337 

 

 

 

-0.5378 

2.4644 

3.6768 

0.0070 

-0.5533 

3.6444 

2.4212 

 

 

 

1.0764 

0.5139 

0.3751 

0.1139 

1.1081 

0.7745 

0.2841 

0.9 (0.5, 0.1) 

 

 

 

(0.5, 0.5) 

 

 

 

(0.5, 0.9) 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

β0 

βx 

σ2
sy 

σ2
ε 

0.0143 

-0.2261 

7.9027 

-0.7371 

-0.0125 

-0.2808 

7.4721 

-0.6466 

-0.0311 

-0.3498 

7.6313 

-0.6241 

0.1087 

0.4617 

1.6105 

0.0756 

0.1279 

0.5676 

1.5079 

0.0703 

0.2651 

0.7059 

1.5422 

0.0709 

0.0144 

-0.4383 

7.9853 

4.7356 

-0.0125 

-0.5291 

7.5494 

3.6836 

-0.0310 

-0.5480 

7.7089 

2.9474 

0.1087 

0.8783 

1.6269 

0.4767 

0.1278 

1.0593 

1.5229 

0.3714 

0.2649 

1.0971 

1.5576 

0.2981 

 

Tables 3 show the overall fit statistics for the Spa-

tio-Temporal Measurement Error and Naïve Models. The 

MLIK, DIC, and WAIC all tend to favor the Spa-

tio-Temporal Measurement Error model for all sample sizes 

(N) and for all combination the spatial and temporal de-

pendence parameter. The percentage (%) of samples that the 

criteria choose the Spatio-Temporal Measurement Error 

model as the best model are 100%. 

Table 3.  MLIK, DIC and WAIC of Bayesian Spatio-Temporal Measure-
ment Error and Naïve Models. 

Model 

N ρT (ρsy, 

ρsx) 

Criterion ME NAIVE 

49 0.5 (0.5, 

0.1) 

 

(0.5, 

0.5) 

 

 

(0.5, 

0.9) 

MLIK 

DIC 

WAIC 

MLIK  

DIC 

WAIC 

MLIK 

DIC 

WAIC 

-1487.77 (100%) 

629.84 (100%) 

544.15 (100%) 

-1431.31 (100%) 

557.49 (100%) 

462.50 (100%) 

-1453.38 (100%) 

559.31 (100%) 

486.05 (100%) 

-863.83 (0%) 

1299.21 (0%) 

1305.52 (0%) 

-839.28 (0%) 

1211.97 (0%) 

1217.85 (0%) 

-845.03 (0%) 

1147.52 (0%) 

1144.70 (0%) 

0.9 (0.5, 

0.1) 

 

(0.5, 

0.5) 

 

(0.5, 

0.9) 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

-1661.14 (100%) 

527.07 (100%) 

437.23 (100%) 

-1582.86 (100%) 

531.94 (100%) 

480.21 (100%) 

-1611.37 (100%) 

530.89 (100%) 

485.20 (100%) 

-908.28 (0%) 

1289.97 (0%) 

1296.54 (0%) 

-878.62 (0%) 

1208.86 (0%) 

1214.10 (0%) 

-877.82 (0%) 

1161.82 (0%) 

1163.01 (0%) 

100 0.5 (0.5, 

0.1) 

 

(0.5, 

0.5) 

 

(0.5, 

0.9) 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

-3007.74 (100%) 

1188.50 (100%) 

1061.96 (100%) 

-2887.13 (100%) 

1270.71 (100%) 

1245.92 (100%) 

-2903.56 (100%) 

1151.80 (100%) 

1078.52 (100%) 

-1751.40(0%) 

2639.90 (0%) 

2652.42 (0%) 

-1699.7 (0%) 

2446.95 (0%) 

2457.80 (0%) 

-1693.20(0%) 

2255.15 (0%) 

2240.24 (0%) 

0.9 (0.5, 

0.1) 

 

(0.5, 

0.5) 

 

(0.5, 

0.9) 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

MLIK  

DIC 

WAIC 

-3362.06 (100%) 

799.02 (100%) 

542.76(100%) 

-3188.09 (100%) 

759.13 (100%) 

564.58 (100%) 

-3209.56 (100%) 

857.76 (100%) 

660.73 (100%) 

-1839.56(0%) 

2631.99 (0%) 

2642.41 0%) 

-1780.38(0%) 

2471.31 (0%) 

2478.72 (0%) 

-1767.71(0%) 

2373.18 (0%) 

660.73 (0%) 

4. Conclusion  

In this paper, we investigate the bias induced in the esti-

mated regression coefficient when covariates are measured 

with error in spatio-temporal regression modeling using 

Bayesian approach. We consider different spatial and tem-

poral dependence parameter of response and covariate. 

The simulation results show that the naïve Bayesian 

analysis that ignores measurement error will attenuate esti-

mated regression coefficient towards the null. Furthermore, 

we observe that the amount of attenuation increase with the 

spatial dependence parameter of covariate, but decrease with 

the temporal dependence parameter. In contrast, the Bayes-

ian analysis considering measurement error show more ac-

curate and efficient estimated regression coefficient com-

pared with naïve analysis. 
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